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When people utilize social applications and services, their privacy suffers a potential serious threat. In
this article, we present a novel, robust, and effective de-anonymization attack to mobility trace data and
social data. First, we design a Unified Similarity (US) measurement, which takes account of local and global
structural characteristics of data, information obtained from auxiliary data, and knowledge inherited from
ongoing de-anonymization results. By analyzing the measurement on real datasets, we find that some data
can potentially be de-anonymized accurately and the other can be de-anonymized in a coarse granularity.
Utilizing this property, we present a US-based De-Anonymization (DA) framework, which iteratively de-
anonymizes data with accuracy guarantee. Then, to de-anonymize large-scale data without knowledge of
the overlap size between the anonymized data and the auxiliary data, we generalize DA to an Adaptive
De-Anonymization (ADA) framework. By smartly working on two core matching subgraphs, ADA achieves
high de-anonymization accuracy and reduces computational overhead. Finally, we examine the presented
de-anonymization attack on three well-known mobility traces: St Andrews, Infocom06, and Smallblue, and
three social datasets: ArnetMiner, Google+, and Facebook. The experimental results demonstrate that the
presented de-anonymization framework is very effective and robust to noise.

The source code and employed datasets are now publicly available at SecGraph [2015].
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and privacy → Data anonymization and sanitization

Additional Key Words and Phrases: Graph de-anonymization, social networks, mobility traces

This work was partly supported by the National Science and Technology Support Program of China
(2014BAH24F01). Mudhakar Srivatsa’s research was partly sponsored by the US Army Research Laboratory
and the UK Ministry of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the US Army Research Laboratory, the
U.S. Government, the UK Ministry of Defense, or the UK Government. The U.S. and UK Governments are
authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation hereon. Jing S. He’s research is partly supported by the Kennesaw State University College of
Science and Mathematics Interdisciplinary Research Opportunities (IDROP) Program.
Authors’ addresses: S. Ji is with the College of Computer Science and Technology, Zhejiang Univer-
sity, Hangzhou, Zhejiang 310027, China and with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA; email: sji@gatech.edu; W. Li is with the School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; email:
wli64@gatech.edu; M. Srivatsa is with the IBM Thomas J. Watson Research Center, Yorktown Heights, NY
10598, USA; email: msrivats@us.ibm.com; J. S. He is with the Department of Computer Science, Kenne-
saw State University, Marietta, GA 30060, USA; email: jhe4@kennesaw.edu; R. Beyah is with the School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; email:
rbeyah@ece.gatech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1094-9224/2016/04-ART12 $15.00
DOI: http://dx.doi.org/10.1145/2894760

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 12, Publication date: April 2016.

http://dx.doi.org/10.1145/2894760


12:2 S. Ji et al.

ACM Reference Format:
Shouling Ji, Weiqing Li, Mudhakar Srivatsa, Jing Selena He, and Raheem Beyah. 2016. General graph data
de-anonymization: From mobility traces to social networks. ACM Trans. Inf. Syst. Secur. 18, 4, Article 12
(April 2016), 29 pages.
DOI: http://dx.doi.org/10.1145/2894760

1. INTRODUCTION

Social networking services are a fast-growing business nowadays. The development of
smartphone technologies further advances the proliferation of social applications and
services, such as instant messaging (e.g., IRC, AIM, MSN, Jabber, Skype), sharing sites
(e.g., Flickr, Picassa, YouTube, Plaxo), blogs (e.g., Blogger, WordPress, LiveJournal),
wikis (e.g., Wikipedia, PBWiki, Wolfram MathWorld), microblogs (e.g., Twitter, Jaiku),
social sites (e.g., Facebook, MySpace, Ning, Google+), and collaboration networks (e.g.,
DBLP, ArnetMiner). Due to the big commercial value to businesses and huge impacts
to society, social networks and data analysis have attracted more and more research
interest [Backstrom et al. 2007; Narayanan and Shmatikov 2009; Srivatsa and Hicks
2012; Ji et al. 2014, 2015a, 2015b].

When users participate in online social network activities (e.g., create personal port-
folios and connect to social friends) or utilize social network functions (e.g., post current
location or share information with virtual social friends), people’s privacy suffers a po-
tential serious threat. On the other hand, to utilize the huge amount of users’ data for
commercial or academic purposes, social network owners usually release social data
for research (data mining) or transfer data to business partners for target advertising
[Narayanan and Shmatikov 2009]. Furthermore, the mighty advance of mobile com-
puting and communication technology enables mobile devices such as smartphones
to gather abundant information about users [Srivatsa and Hicks 2012]. For example,
users can update their location position or show their sharing/following information
through Twitter/Facebook on smartphones easily.

To protect users’ privacy, social network owners and services providers usually
anonymize data by removing “Personally Identifiable Information (PII)” before releas-
ing the data to the public. However, in reality, this data anonymization is vulnerable
to a new social auxiliary information-based data de-anonymization attack [Backstrom
et al. 2007; Narayanan and Shmatikov 2009; Srivatsa and Hicks 2012]. The practicality
and effectiveness come from two fundamental facts. First, when network owners and
services providers publish data, only naive anonymization techniques are applied to
remove basic PII. For example, even for the carefully processed (by unknown sampling
techniques) and anonymized (incorporating data perturbation) Netflix Prize dataset,
which contains anonymous movie ratings of 500,000 subscribers of Netflix and which
was released for the research contest purpose, its structure itself carries enough infor-
mation for effective privacy breaching [Narayanan and Shmatikov 2008]. Furthermore,
existing anonymization techniques (e.g., Campan and Truta [2008], Hay et al. [2008],
Liu and Terzi [2008], and Zheleva and Getoor [2007]) have several limitations, such
as making impractical assumptions about social data or knowledge of adversaries, not
being scalable, and so forth (detailed limitation analysis is shown in the related work
section), which prevent them from being workable in reality [Backstrom et al. 2007;
Narayanan and Shmatikov 2009; Srivatsa and Hicks 2012]. The second fact is the
wide and common availability of social auxiliary information [Backstrom et al. 2007;
Narayanan and Shmatikov 2009; Srivatsa and Hicks 2012]. As indicated in Narayanan
and Shmatikov [2009] and Srivatsa and Hicks [2012], adversaries can obtain social
auxiliary information easily or with a few efforts through multiple channels, for ex-
ample, academic and government data mining, advertising, third-party applications,
data aggregation and inferring, privacy attack and acquiring, and smart sensing and
collection. Even if the availability of large-scale auxiliary information is unlikely,
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a small amount of auxiliary knowledge is usually enough for successful privacy
breaching.

A few de-anonymization attacks have been designed for social data [Backstrom et al.
2007; Narayanan and Shmatikov 2009] or mobility trace data [Srivatsa and Hicks
2012]. However, existing works are limited due to one or several reasons, for example,
scalability, generality, and robustness. Our work improves existing works in some or all
of the following aspects. First, we significantly improve the de-anonymization accuracy
and decrease the computational complexity by proposing a novel Core Matching Sub-
graphs (CMSs)-based adaptive de-anonymization strategy. Second, besides utilizing a
node’s local property, we incorporate a node’s global property into de-anonymization
without incurring high computational complexity. Furthermore, we also define and
apply two new similarity measurements in the proposed de-anonymization technique.
Finally, the de-anonymization algorithm presented in this work is a much more gen-
eral attack framework. It can be applied to both mobility trace data and social data,
directed and undirected data graphs, and weighted and unweighted datasets. We give
the detailed analysis and remarks in the related work section (Section 2).

In summary, our main contributions in this article are as follows:

(1) We analyze three de-anonymization metrics, namely, structural similarity, relative
distance similarity, and inheritance similarity. By structural similarity, we consider
both the local and the global topological characteristics of a node and then quan-
tify the similarity between two nodes with respect to their structural properties.1
By relative distance similarity, we measure how two nodes are similar from the
perspective of auxiliary seed information. By inheritance similarity, we quantify
the similarity between two nodes in terms of the knowledge given by nodes that
have already been de-anonymized. We also examine how the three measurements
function on real datasets. By experiments, we find that some anonymized nodes
are significantly distinguishable with respect to some metrics, which suggests that
these nodes are potentially easy to de-anonymize. On the other hand, for the other
nodes with indistinctive characteristics, they can also be de-anonymized, but with
a more coarse granularity.

(2) Toward effective de-anonymization, we define a Unified Similarity (US) measure-
ment by synthetically considering the defined structural similarity, relative dis-
tance similarity, and inheritance similarity. Subsequently, we propose a US-based
De-Anonymization (DA) framework, by which we iteratively de-anonymize the
anonymized data with accuracy guarantee provided by a de-anonymization thresh-
old and a mapping control factor.

(3) To de-anonymize large-scale data without knowledge of the overlap size between
the anonymized data and the auxiliary data, we generalize DA to an Adap-
tive De-Anonymization (ADA) framework. ADA adaptively conducts data de-
anonymization starting from two Core Matching Subgraphs, which are defined to
estimate the overlap size between the anonymized data and the auxiliary data. By
smartly working on CMSs, the de-anonymization in ADA is limited in two relatively
small subgraphs with more information confidence, and thus the de-anonymization
accuracy is improved and the computational overhead is reduced. In addition, we
also extend DA/ADA to the scenario that the anonymized data or the auxiliary data
cannot be modeled by connected graphs.

(4) We apply the presented de-anonymization framework to three well-known mobility
traces: St Andrews [Bigwood et al. 2011], Infocom06 [Scott et al. 2009], and Small-
blue [Smallblue 2009]. The experimental results demonstrate that the presented
de-anonymization attack is very effective and robust. With only the knowledge of

1In this article, we use topological characteristics and structure/structural characteristics interchangeability.
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one seed mapping, 57.7%, 93.2%, and 78.3% of the data in St Andrews, Infocom06,
and Smallblue can be successfully de-anonymized, respectively. Furthermore, even
when 20% of noise is added into the anonymized data, 80.8%, 50.7%, and 60.8%
of the data in St Andrews, Infocom06, and Smallblue can still be successfully de-
anonymized, respectively (with five seed mappings).

(5) We also examine the presented de-anonymization attack on social datasets: Arnet-
Miner (a weighted coauthor dataset consists of 1,127 authors and 6,690 coauthor
relationships) Google+ (two datasets with one consisting of 5,200 users and 7,062
connections and the other consisting of 5,200 users and 7,813 connections), and
Facebook (63,731 users and 1,269,502 “friendship” relationships). Again, the ex-
perimental results demonstrate the effectiveness and robustness of the presented
de-anonymization framework. Based solely on the knowledge of five seed map-
pings, 96% of users in ArnetMiner (with 4% noise) and 58% of users in Google+
can be successfully de-anonymized. More importantly and surprisingly, even the
overlap between the anonymized data and the auxiliary data is just 20% in Face-
book, and 90.8% of the common users can also be successfully de-anonymized with
false-positive error of 8.6% according to 20 seed mappings. Furthermore, we also an-
alyze the impact of leaf users (users with one connection) on the de-anonymization
performance according to experiments on real data.

The rest of this article is organized as follows. In Section 2, we survey the most
related work. In Section 3, we give the preliminaries and considered data model. In
Section 4, the de-anonymization framework is presented. In Section 5, the proposed
de-anonymization framework is refined and extended to general large-scale social
datasets. We illustrate and discuss the results from extensive experiments on real
social and mobility datasets in Section 6. Finally, we conclude this article in Section 7.

2. RELATED WORK

In this section, we survey the related work. We first review the network science metrics
that we leverage to measure the similarity, especially the structural similarity, between
anonymized users and auxiliary users. Then, we survey specific anonymization tech-
niques for and de-anonymization attacks on social and mobility datasets. Finally, we
discuss the differences that distinguish the proposed de-anonymization attack from
existing de-anonymization attacks.

2.1. Metrics and Similarity

In the design of our de-anonymization attack, one crucial step is to measure the struc-
tural similarity between an anonymized user and an auxiliary user (that can be consid-
ered as a known user, formally defined in Section 3). When measuring the structural
similarity between two nodes (users), we employ several metrics from the network
science. We briefly introduce these metrics in this subsection.

In graph theory and network science, centrality measurements are widely employed to
measure the importance of a node within a graph/network [Centrality 2015; Newman
2010]. In this article, we use degree centrality, closeness centrality, and betweenness
centrality, as well as their weighted versions, to measure the structural properties of
a node within a graph (formal definitions are given in Section 4). Degree centrality
measures the number of edges connected to a node, which shows the local structural
characteristic (importance) of a node within a graph [Freeeman 1978; Newman 2010].
Closeness centrality measures the mean distance from a node to other nodes in a graph
(component in a disconnected graph), which is one widely employed global structural
characteristic of a node [Newman 2010]. It was first introduced by Bavelas [1950] (in
the name of reciprocal of the farness). Later, it was rephrased by Freeeman [1978].
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[Rochat 2009] extended the closeness centrality to the scenario of disconnected graphs.
In another independent work, Opsahl [2010] also extended the concept of closeness
centrality to disconnected graphs. Betweenness centrality measures the extent to which
a node lies on the shortest paths between other nodes, which is another widely em-
ployed global structural characteristic of a node [Freeeman 1978; Newman 2010]. Its
formalization is usually attributed to Freeman in Freeeman [1978]. Recently, Opsahl
et al. [2010] generalized the definitions of degree centrality, closeness centrality, and
betweenness centrality to weighted graphs. Newman [2010] made a detailed introduc-
tion to these three centrality metrics as well as other node centrality measures, for
example, Katz centrality, PageRank, Hubs, and Authorities. Other works on axioma-
tizing these centrality metrics for graphs were conducted by Garg [2009] and Boldi and
Vigna [2014].

Many real-world graph applications and mining tasks leverage network/graph
similarity, which is usually measured using three fundamental approaches in net-
work science: structural equivalence, automorphic equivalence, and regular equivalence
[Similarity 2015; Newman 2010]. Among the three approaches, structural equivalence
is the strongest form of similarity. In many real applications, it is usually relaxed to
some weak form of similarity [Similarity 2015; Hanneman and Riddle 2005]. Along this
line and leveraging different structural characteristics of nodes within a graph, sev-
eral structural similarity measures have been developed in various applications [Basak
et al. 1988; Brandes and Lerner 2004; Zhou et al. 2009; Narayanan and Shmatikov
2009; Nilizadeh et al. 2014]. For instance, Basak et al. [1988] studied to determine the
structural similarity of chemicals using graph-theoretic indices. Brandes and Lerner
[2004] introduced structural similarity by relaxation of equitable partitions and applied
the concept for role assignment (role extraction). Zhou et al. [2009] defined structural
similarity based on neighborhood random walk distance and applied the concept for
graph clustering. In the security and privacy area, structural similarity is also widely
used to measure how similar two users are with respect to different graph theory met-
rics (e.g., degree centrality) [Narayanan and Shmatikov 2009; Nilizadeh et al. 2014].

2.2. Anonymize Social and Mobility Data

Social and mobility trace data are now easily obtainable and available through multiple
channels, for example, academic and government data mining, advertising, third-party
applications, data aggregation and inferring, and privacy attack and acquiring [Back-
strom et al. 2007; Narayanan and Shmatikov 2009; Srivatsa and Hicks 2012]. To protect
the privacy of publicly released data, a common method is to anonymize data by remov-
ing PII (e.g., name, age, social security number) before releasing data. However, this
naive data anonymization is usually vulnerable to de-anonymization attacks [Cam-
pan and Truta 2008; Hay et al. 2008; Liu and Terzi 2008]. Therefore, several further
strategies are proposed with the main idea of perturbing the raw data by increasing
the automorphism of the data itself, which could make the released data nondistin-
guishable and thus defend against the de-anonymization (reidentification) attacks.

To preserve the privacy of sensitive relationships in graph data, Zheleva and Getoor
[2007] designed five different privacy preservation strategies depending on the amount
of data removed and the amount of privacy preserved. However, the common availabil-
ity of auxiliary information for an adversary is not taken into account in the designed
strategies.

Hay et al. [2008] introduced k-anonymity to social data anonymization. An assump-
tion made on an adversary’s information is that the attacker only has the degree
knowledge about the target or partial structural knowledge on the neighborhood of
the target. Nevertheless, in reality, the adversary has much more auxiliary informa-
tion available easily or with a small effort (e.g., through academic and government
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data mining, advertising, third-party applications). On the other hand, the designed
k-anonymity scheme is applicable to low-average-degree social graphs [Narayanan and
Shmatikov 2009]. Nevertheless, the fact is, social graphs’ average degree tends to be
large and still increasing [McAuley and Leskovec 2012; Gong et al. 2012b]. For instance,
the numbers of nodes and edges in a connected component of Google+ are 69,501 and
9,168,660, respectively, which implies a large average degree of 263.8.

Campan and Truta [2008] extended the k-anonymity scheme in Hay et al. [2008] by
defining an information loss measure that quantifies the amount of structural infor-
mation loss due to edge generalization. A similar k-anonymity approach is also applied
toward ID anonymization on graphs by Liu and Terzi [2008], where the a priori knowl-
edge of adversaries is assumed to be the degree of certain nodes only. As we pointed
out before, adversaries can obtain much richer auxiliary information easily or with a
small effort. More importantly, as indicated in Narayanan and Shmatikov [2009], the
cornerstone of k-anonymity is based on data’s syntactic property, which may not work
on protecting actual data privacy even been satisfied.

2.3. De-Anonymize Social and Mobility Data

The most closely related works to this article are Backstrom et al. [2007], Narayanan
and Shmatikov [2009], Srivatsa and Hicks [2012], and Ji et al. [2014]. Backstrom et al.
[2007] introduced both active attacks and passive attacks to de-anonymize social data.
For the active attack, the adversary should create a number of Sybil nodes and build
relationships between Sybil nodes and target nodes before data release (practically and
intuitively, it is not straightforward to know when and which part of social data will be
released, as well as when to implant Sybil nodes). As analyzed in the subsequent work
[Narayanan and Shmatikov 2009], many reasons limit the practicality of the active
attack. A direct limitation is that the active attack is not scalable and difficult to control
because the amount of social data continues to increase [McAuley and Leskovec 2012;
Gong et al. 2012b]. To execute active attack, many Sybil nodes and relationships/ties
should be created, which is not practical. Furthermore, Sybil defense schemes [Alvisi
et al. 2013; Yu et al. 2008a, 2008b, 2009] make this even more difficult. On the other
hand, in real online social networks, target nodes have no reason to respond to the
connection requests from strange Sybil nodes. For the passive attack in Backstrom
et al. [2007], adversaries can breach the privacy of users with whom they are linked,
which is again suitable for small social networks and difficult to extend to large-scale
social data.

Narayanan and Shmatikov [2009] extended the de-anonymization attack to large-
scale directed social network data; that is, the social data carries direction information,
which can be used as auxiliary knowledge. The designed de-anonymization algorithm
included two phases: seed identification and propagation. In the seed identification
phase, a set of seed mappings are identified between the anonymized graph and the
auxiliary graph. In the propagation process, the identified seed mappings are prop-
agated to general mappings between the anonymized graph and the auxiliary graph
by employing several heuristic metrics, including eccentricity, edge directionality, node
degrees, revisiting nodes, and reverse match. The time complexity of the propagation
phase in Narayanan and Shmatikov [2009] is O((|E1| + |E2|)d1d2) = O(n4), where |E1|
and d1 (|E2| and d2, respectively) are the edge set cardinality and degree bound of the
anonymized graph (auxiliary graph, respectively), respectively, and n is the number of
nodes in the anonymized graph or auxiliary graph (same from the order perspective).

Srivatsa and Hicks [2012] presented the first de-anonymization attack to mobility
traces while using social networks as a side channel. The de-anonymization process also
consists of two phases: landmark (seed) selection and mapping propagation. In the land-
mark selection phase, k landmarks with the highest betweenness scores will be selected
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in the anonymized graph and the auxiliary graph, respectively, as seeds. In the prop-
agation process, three schemes are developed for graph matching (de-anonymization),
namely, distance vector, randomized spanning trees, and recursive subgraph matching.
To give a high graph matching (de-anonymization) accuracy, the mapping propagation
process will be repeated for each of all the k! possible landmark mappings between
the anonymized graph and the auxiliary graph, which is very time-consuming (e.g., to
de-anonymize the Smallblue dataset, which has 125 nodes [Smallblue 2009] with five
landmarks, it takes the designed mapping propagation schemes 6.7 hours, 6.2 hours,
and 0.5 hours, respectively). Therefore, scalability could be a significant limitation of
the work in Srivatsa and Hicks [2012].

Ji et al. [2014] studied the de-anonymizability of graph data. Specifically, they quanti-
fied the structural conditions for perfectly or partially de-anonymizing an anonymized
graph. Furthermore, according to the quantification, they proposed a seed-free de-
anonymization attack, which is suitable for dense and large-scale graphs. Subsequently,
Ji et al. [2015a] further theoretically studied the de-anonymizability of social net-
works with seed knowledge. They also provided the conditions for perfectly or partially
de-anonymizing social networks with seed knowledge. Recently, Ji et al. developed
SecGraph, a uniform and open-source platform for graph data anonymization and de-
anonymization [Ji et al. 2015b; SecGraph 2015]. In SecGraph, they implemented and
evaluated 11 graph anonymization schemes, 12 graph utility metrics, seven applica-
tion utility metrics, and 15 modern graph de-anonymization attacks (including the two
attacks proposed in this article). They found that existing anonymization schemes are
still vulnerable to one or several de-anonymization attacks. The degree of vulnera-
bility of each anonymization scheme depends on how much and which data utility it
preserves. Nilizadeh et al. [2014] studied how to use the graph community informa-
tion to enhance existing seed-based de-anonymization attacks (e.g., Narayanan and
Shmatikov [2009] and Srivatsa and Hicks [2012]). They proposed a community-based
de-anonymization framework, which de-anonymizes a graph first at the community
level and then at the user level.

2.4. Remark

Some or all of the following aspects distinguish this work from existing techniques.
First, when de-anonymizing large datasets, we define CMS in both the anonymized
graph and the auxiliary graph according to seed information. Based on CMS, we pro-
pose a novel adaptive de-anonymization strategy that is quite suitable for large-scale
data de-anonymization. Following this strategy, we de-anonymize the nodes in CMS
first and then propagate the de-anonymization by spanning CMS in both graphs adap-
tively. In this manner, we can significantly improve the de-anonymization accuracy
and decrease the computational complexity. Second, the degree centrality can only
indicate the local property of a node in a graph. In some anonymized data, the fact
that there are many nodes with similar degrees blurs or even invalidates the effec-
tiveness of using degree to match/distinguish nodes. Therefore, we include metrics
indicating global properties of a node in a graph (e.g., closeness centrality, between-
ness centrality). Furthermore, besides utilizing structural knowledge, we also define
and apply two similarity measurements in the proposed de-anonymization technique,
namely, the relative distance similarity and the inheritance similarity. This increases
the de-anonymization efficiency and accuracy. More importantly, the computational
cost induced by including new global metrics can be overcome through the CMS-based
adaptive de-anonymization in large-scale datasets. Third, the de-anonymization at-
tack presented in Narayanan and Shmatikov [2009] applies to social data that can be
modeled by directed graphs, where the direction information is assumed to be free aux-
iliary information for adversaries. In this work, we consider a more general scenario
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by removing the direction limitation. Our de-anonymization algorithm works for undi-
rected graphs as well as directed graphs by incorporating the direction heuristic in
Narayanan and Shmatikov [2009]. Finally, we also consider the potential weight (re-
lationship strength) information on edges of anonymized graphs. Therefore, our de-
anonymization algorithm is also effective on weighted graphs. In summary, the de-
anonymization attack presented in this work applies to large-scale social network
data, mobility trace data, directed/undirected data graphs, and weighted/unweighted
data graphs and is more general than previous works.

3. PRELIMINARIES AND SYSTEM MODEL

3.1. Anonymized and Auxiliary Data Models

3.1.1. Anonymized Data Graph. In this article, we consider the anonymized data that
can be modeled by an undirected graph,2 denoted by Ga = (V a, Ea, Wa), where
V a = {i|i is a node} is the node set (e.g., users in an anonymized Google+ graph),
Ea = {la

i, j |i, j ∈ V a, and there is a tie between i and j} is the set of all the links
existing between any two nodes in V a (a link could be a friend relationship such as
in Google+ or a contact relationship such as in the mobility trace St Andrew), and
Wa = {wa

i, j |i, j ∈ V a, la
i, j ∈ Ea, wa

i, j is a real number} is the set of possible weights asso-
ciated with links in Ea (e.g., in a coauthor graph, the weight of a coauthor relationship
could be the number of coauthored papers). If Ga is an unweighted graph, we simply
define wa

i, j = 1 for each link la
i, j ∈ Ea.

For ∀i ∈ V a, we define its neighbor set as Na(i) = { j ∈ V a|la
ij ∈ Ea}. Then, �a

i = |Na(i)|
represents the number of neighbors of i in Ga. For ∀i, j ∈ V a, let pa(i, j) be the shortest
path from i to j in Ga and |pa(i, j)| be the number of links on pa(i, j) (the number of
links passed from i to j through pa(i, j)). Then, we define P

a
i, j = {pa(i, j)} as the set of

all the shortest paths between i and j. Furthermore, we define the diameter of Ga as
Da = max{|pa(i, j)|∀i, j ∈ V a, pa(i, j) ∈ P

a
i, j}, that is, the length of the longest shortest

path in Ga.

3.1.2. Auxiliary Data Graph. As in Narayanan and Shmatikov [2009] and Srivatsa and
Hicks [2012], we assume the auxiliary data is the information crawled in current
online social networks, for example, the “follow” relationships on Twitter [Narayanan
and Shmatikov 2009], the “contact” relationships on Flickr, the “friend” relationships
on Facebook, and the “circle” relationships on Google+. Furthermore, similar to the
anonymized data, the auxiliary data can also be modeled as an undirected graph Gu =
(V u, Eu, Wu), where V u is the node set, Eu is the set of all the links (relationships) among
the nodes in V u, and Wu is the set of possible weights associated with the links in Eu.
As for the definitions on the anonymized graph Ga, we can define the neighborhood of
∀i ∈ V u as Nu(i), the shortest path set between i ∈ V u and j ∈ V u as P

u(i, j) = {pu(i, j)},
and the diameter of Gu as Du = max{|pu(i, j)|∀i, j ∈ V u, pu(i, j) ∈ P

u(i, j)}.
In addition, we assume Ga and Gu are connected. Note that this is not a limitation

of our scheme. The designed de-anonymization algorithm is also applicable to the case
where Ga and Gu are not connected. We will discuss this in Section 5.

3.2. Attack Model

Our de-anonymization objective is to map the nodes in the anonymized graph Ga to the
nodes in the auxiliary graph Gu as accurately as possible. Then, adversaries can rely

2Note that the de-anonymization algorithm designed in this article can also be applied to directed graphs
directly by overlooking the direction information on edges, or by incorporating the edge-direction-based
de-anonymizatoin heuristic in Narayanan and Shmatikov [2009].
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Table I. Overview of St Andrews, Infocom06, Smallblue,
and Associated Social Networks

St Andrews Infocom06 Smallblue

Comm. network type WiFi Bluetooth IM
Comm. nodes no. 27 78 125
Duration (days) 30 4 30
Granularity (secs) 300 120 300
Contacts no. 18,241 182,951 240,665

Social network type Facebook DBLP Facebook
Social nodes no. 27 616 400

on the auxiliary data such as the portfolio created by users in online social networks to
breach users’ privacy. Formally, let γ (v) be the objective reality of v ∈ Ga in the physical
world. Then, an ideal de-anonymization can be represented by mapping � : Ga → Gu,
such that for v ∈ Ga,

�(v) =
{

v′, if v′ = �(v) ∈ V u;
⊥, if �(v) /∈ V u, (1)

where ⊥ is a special not existing indicator. Now, let

M = {(v1, v
′
1), (v2, v

′
2), . . . , (vn, v

′
n)}

be the outcome of a de-anonymization attack such that{
vi ∈ V a,∪vi = V a, n = |V a|, i = 1, 2, . . . , n;
v′

i = �(vi), v′
i ∈ V u ∪ {⊥}, i = 1, 2, . . . , n.

(2)

Then, the de-anonymization on vi is said to be successful if{
�(vi) = γ (vi), if γ (vi) ∈ V u;
�(vi) = ⊥, if γ (vi) /∈ V u, (3)

or a failure if {
�(vi) ∈ {u|u ∈ V u, u �= γ (vi)} ∪ {⊥}, if γ (vi) ∈ V u;
�(vi) �=⊥, if γ (vi) /∈ V u. (4)

In this article, we are aiming to design a de-anonymization framework with a high suc-
cess rate (accuracy) and a low failure rate. In addition, the designed de-anonymization
algorithm is expected to be robust to noise and scalable to large-scale datasets.

3.3. Datasets

In this article, we employ six well-known datasets to examine the effectiveness of the
designed de-anonymization framework: St Andrews/Facebook [Bigwood et al. 2011;
Srivatsa and Hicks 2012], Infocom06/DBLP [Scott et al. 2009; Srivatsa and Hicks
2012], Smallbule/Facebook [Smallblue 2009; Srivatsa and Hicks 2012], ArnetMiner
[Tang et al. 2008], Google+ [Gong et al. 2012b], and Facebook [Viswanath et al. 2009]. St
Andrews, Infocom06, and Smallbule are three mobility trace datasets. The St Andrews
dataset contains the WiFi-recorded mobility trace data of 27 T-mote users through 30
days deployed in the University of St Andrews. The Infocom06 trace includes Bluetooth
sightings by a group of 78 users carrying iMotes for 4 days in IEEE INFOCOM 2005 in
the Grand Hyatt Miami. The Smallbule dataset consists of contacts among 125 instant
messenger users on an enterprise network. An overview of the three mobility traces is
shown in Table I. We employ the exact same techniques as in the previous work [Sri-
vatsa and Hicks 2012] to preprocess the three mobility trace datasets to obtain three
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anonymized data graphs. To de-anonymize the aforementioned three anonymized mo-
bility data traces, we employ three auxiliary social network datasets [Srivatsa and
Hicks 2012] associated with these three mobility traces. For the St Andrews dataset,
we have a Facebook dataset indicating the “friend” relationships among the T-mote
users in the trace. For the Infocom06 dataset, we employ a coauthor dataset consist-
ing of 616 authors obtained from DBLP, which indicates the “coauthor” relationships
among all the attendees of INFOCOM 2005. For the Smallblue dataset, we have a
Facebook dataset indicating the “friend” relationships among 400 employees from the
same enterprise as Smallblue. Note that the social network datasets corresponding to
Infocom06 and Smallblue are supersets of them.

We also apply the presented de-anonymization attack to social datasets: ArnetMiner
[Tang et al. 2008], Google+ [Gong et al. 2012a], and Facebook [Viswanath et al. 2009].
ArnetMiner is an online academic social network. In this article, the employed data
is extracted from ArnetMiner in 2011 on the topic “Database Systems/XML Data,”
which consists of 1,127 authors and 6,690 “coauthor” relationships. For each coauthor
relationship, there is a weight associated with it indicating the number of coauthored
papers by the two authors. Consequently, the ArnetMiner data can be modeled by
a weighted graph. Furthermore, we know the ground truth of the ArnetMiner data.
When using it to examine the presented de-anonymization attack, we will anonymize it
first by adding different levels of noise. Then, we apply our method to de-anonymize it.
As a new social network, Google+ was launched in early July 2011. We use two Google+
datasets, which were created on July 19 and August 6, 2011 [Gong et al. 2012a], denoted
by JUL and AUG, respectively. Both JUL and AUG consist of 5,200 users as well as
their profiles. In addition, there were 7,062 connections in JUL and 7,813 connections in
AUG. By insight analysis [Gong et al. 2012a], some connections that appeared in AUG
may not appear in JUL and vice versa. This is because a user may add new connections
or disable existing connections. Furthermore, the two datasets are preprocessed as
undirected graphs. Since we know the hand-labeled ground truth of JUL and AUG, we
will examine the presented de-anonymization framework by de-anonymizing JUL with
AUG as auxiliary data and then de-anonymizing AUG with JUL as auxiliary data.
The Facebook dataset consists of 63,731 users and 1,269,502 “friend” relationships
(links). To use this dataset to examine the presented de-anonymization attack, we
will preprocess it based on the known hand-labeled ground truth. For more detailed
experimental settings and data processing, we will describe them in the experimental
section (Section 6).

4. DE-ANONYMIZATION

From a macroscopic view, the designed de-anonymization attack framework consists of
two phases: seed selection and mapping propagation. In the seed selection phase, we
identify a small number of seed mappings from the anonymized graph Ga to the aux-
iliary graph Gu serving as landmarks to bootstrap the de-anonymization. In the map-
ping propagation phase, we de-anonymize Ga through synthetically exploiting multiple
similarity measurements. Since seed selection can be implemented by many existing
strategies and will not be our primary technical contribution, we will discuss it briefly
and focus on how to design an effective mapping propagation scheme.

4.1. Seed Selection and Mapping Spanning

The rationality and feasibility of seed selection in our de-anonymization framework
(as well as other de-anonymization attacks) lie in three realities. The first is the com-
mon availability of huge amounts of social data, which is an open and rich source for
obtaining a small number of seeds. For instance, (1) for the data published for aca-
demic and government data mining, some auxiliary information may be released at
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the same time or can be obtained easily [Narayanan and Shmatikov 2008]; (2) the
social data (e.g., Facebook, MySpace, Google) shared with advertising partners by so-
cial network operators may cause some information leakage, which could be used as
auxiliary seed data for de-anonymization attacks [Narayanan and Shmatikov 2009];
and (3) online social network operators (e.g., Facebook, Twitter) and researchers (e.g.,
Stanford SNAP Datasets [SNAP 2014], Dartmouth CRAWDAD [CRAWDAD 2014])
publish many kinds of anonymized/unanoymized social data periodically. The second
reality is the existence of multiple effective channels to obtain a small number of seed
mappings (actually, we can obtain much richer auxiliary information). Some example
channels are as follows: (1) seed mapping information could be acquired due to data
leakage—for example, some data may be leaked in data release for academic and gov-
ernment data mining with the original purpose of assisting research [Narayanan and
Shmatikov 2008, 2009]; (2) auxiliary information can be collected by launching third-
party applications on online social networks (many successful examples are surveyed
in Narayanan and Shmatikov [2009]); (3) considering the common availability of huge
amounts of social data, another effective method to infer auxiliary information is by
data aggregation—especially in current online social networks, the degree distribution
of nodes (corresponding to users) has been shown to follow the power law distribution
in many cases; therefore, important nodes could be inferred easily and accurately in
terms of their centrality [Srivatsa and Hicks 2012]; and (4) it is also possible to ob-
tain a small number of seed mappings in a human-assisted semiautomatic manner.
Adversaries can crawl some data first and then rely on human-assisted semiautomatic
analysis to obtain some auxiliary information [Narayanan and Shmatikov 2008]. The
third reality is that a small number of seed mappings is sufficiently helpful (or enough
depends on the required accuracy) to our de-anonymization framework. As shown in
our experiments, a small number of seed mappings (sometimes even one seed mapping)
are sufficient to achieve highly accurate de-anoymization.

In our de-anonymization framework, we can select a small number of seed mappings
by employing multiple seed selection strategies [Backstrom et al. 2007; Narayanan and
Shmatikov 2009; Srivatsa and Hicks 2012] individually or collaboratively. Some candi-
date seed selection strategies are as follows: (1) One method to obtain a small number
of seed mappings can be implemented by a Sybil attack [Backstrom et al. 2007], in
which some Sybil nodes will be implanted into the target social network. Then, we
can use the social neighbors of the Sybil nodes or the Sybil nodes themselves as seeds.
Although large-scale Sybil attack to a network is difficult [Yu et al. 2008a, 2009], local
or small-scale Sybil attack to obtain some seed mappings is practical. (2) Another ap-
plicable method to obtain a small number of seed mappings is by compromising nodes
[Backstrom et al. 2007; Narayanan and Shmatikov 2009; Srivatsa and Hicks 2012]. An
adversary could collude with some users in the anonymized data to obtain some seed
mapping information. In addition, the adversary himself could be some node in the
anonymized graph. In this case, it is even easier to obtain seed mapping information.
(3) As we analyzed before, seed mappings can also be obtained by launching third-party
applications on the target network (e.g., Facebook, Twitter). Again, it may be impos-
sible to collect auxiliary information in large scale; however, small scale of auxiliary
information collection for seed mapping is practical [Singh et al. 2009; Hornyack et al.
2011; Egele et al. 2011]. (4) Some other existing attacks and seed identifying algorithms
can be employed for seed selection, for example, the seed selection used in Backstrom
et al. [2007] for active and passive attacks, and the clique-based seed identification in
Narayanan and Shmatikov [2009].

Since seed selection is not our primary contribution in this article, we assume we have
identified κ seed mappings by exploiting the aforementioned strategies individually or
collaboratively, denoted by Ms = {(s1, s′

1), (s2, s′
2), . . . , (sκ , s′

κ )}, where si ∈ V a, s′
i ∈ V u,

and s′
i = �(si). In the mapping propagation phase, we will start with the seed mapping
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Ms and propagate the mapping (de-anonymization) to the entire Ga iteratively. Let
M0 = Ms be the initial mapping set and Mk (k = 1, 2, . . .) be the mapping set after the
kth iteration. To facilitate our discussion, we first define some terminologies as follows.

Let Ma
k = ⋃|Mk|

i=1 {vi|(vi, v
′
i) ∈ Mk} and Mu

k = ⋃|Mk|
i=1 {v′

i|(vi, v
′
i) ∈ Mk} \ {⊥} be the sets

of nodes that have been mapped till iteration k in Ga and Gu, respectively. Then, we
define the 1-hop mapping spanning set of Ma

k as �1(Ma
k ) = {v j ∈ V a|v j /∈ Ma

k and ∃vi ∈
Ma

k s.t. v j ∈ Na(vi)}; that is, �1(Ma
k ) denotes the set of nodes in Ga that have some

neighbors that have been mapped and themselves have not been mapped yet. To be
general, we can also define the δ-hop mapping spanning set of Ma

k as �δ(Ma
k ) = {v j ∈

V a|v j /∈ Ma
k and ∃vi ∈ Ma

k s.t. |pa(vi, v j)| ≤ δ}; that is, �δ(Ma
k ) denotes the set of nodes

in Ga that are at most δ hops away from some node that has been mapped and that
themselves have not been mapped yet. Here, δ(δ = 1, 2, . . .) is called the spanning
factor in the mapping propagation phase of the proposed de-anonymization framework.
Similarly, we can define the 1-hop mapping spanning set and δ-hop mapping spanning
set for Mu

k as �1(Mu
k ) = {v′

j ∈ V u|v′
j /∈ Mu

k and ∃v′
i ∈ Mu

k s.t. v′
j ∈ Nu(v′

i)} and �δ(Mu
k ) =

{v′
j ∈ V u|v′

j /∈ Mu
k and ∃v′

i ∈ Mu
k s.t. |pu(v′

i, v
′
j)| ≤ δ}, respectively.

Based on the defined δ-hop mapping sets �δ(Ma
k ) and �δ(Mu

k ), we try to seek a
mapping � that maps the anonymized nodes in �δ(Ma

k ) to some nodes in �δ(Mu
k ) ∪ {⊥}

iteratively in the mapping propagation phase of our de-anonymization framework.
To make the mapping propagation phase effective and controllable, we define several
important measurements according to nodes’ local properties, global properties, relative
global properties, and inheritance properties in the following subsections before giving
the de-anonymization framework.

4.2. Structural Similarity

In graph theory, the concept of centrality is often used to measure the topological im-
portance and characteristic of a node within a graph [Freeeman 1978; Newman 2010;
Similarity 2015]. In this article, we employ three centrality measurements to capture
the topological property of a node in Ga or Gu, namely, degree centrality, closeness cen-
trality, and betweenness centrality [Freeeman 1978; Newman 2010; Similarity 2015].
In the case that the considering data is modeled by a weighted graph, we employ the
weighted versions [Opsahl et al. 2010; Newman 2010] of the employed three centrality
measurements.

4.2.1. Degree Centrality and Weighted Degree Centrality. The degree centrality is defined as
the number of ties that a node has in a graph, that is, the number of links with this
node as an endpoint [Freeeman 1978; Newman 2010]. For instance, in the considering
anonymized data graph, the degree centrality of v ∈ V a is defined as dv = �a

v = |Na(v)|.
Similarly, for v′ ∈ V u, its degree centrality is dv′ = �u

v′ = |Nu(v′)|. To show some
examples, we calculate the degree centrality of the nodes in St Andrews, Infocom06, and
Smallblue, as well as their counterparts in the corresponding social graphs (Facebook,
DBLP, and Facebook), and the results are shown in Figure 2. From Figure 2, we observe
that the degree centrality distributions of the anonymized graph and auxiliary graph
are similar, which implies that degree centrality can be used for de-anonymization.
On the other hand, multiple nodes in both graphs may have similar degree centrality,
which suggests that degree centrality as a structural measurement can be used for
coarse granularity de-anonymization.

When the data being considered is modeled by a weighted graph as shown in Fig-
ure 1, which consists of six nodes and seven links, the weights on links provide extra
information in characterizing the centrality of a node. In this case, the degree centrality
defined for unweighted graphs cannot properly reflect a nodes’ structural importance
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Fig. 1. A weighted graph.

Fig. 2. Degree centrality.

[Opsahl et al. 2010]. For instance, dv2 = dv4 in Figure 1. However, the links associated
with v2 and v4 have different weights or sum weights, which cannot be reflected by dv2

and dv4 . One naive idea is to define the degree centrality of a node in a weighted graph
as the sum of the weights on the links associated with that node [Opsahl et al. 2010].
Nevertheless, this definition overlooks the information about the number of links asso-
ciated with a node on the other hand. As shown in Figure 1,

∑
j �=1 w1, j = ∑

j �=3 w3, j = 12,
while dv1 �= dv3 (as defined in Section 3, wi, j is the weight on the link from i to j or 0 if
there is no link). To consider both the number of links associated with a node and the
weights on these links, we employ the weighted degree centrality definition proposed
in Opsahl et al. [2010]. Formally, for v ∈ V a, its weighted degree centrality is

wdv = �a
v ·

⎛
⎜⎝

∑
u∈Na(v)

wa
v,u

�a
v

⎞
⎟⎠

α

, (5)

where α is a positive tuning parameter that can be set according to the research
setting and data. Basically, when 0 ≤ α ≤ 1, high degree is considered more important,
whereas when α ≥ 1, weight is considered more important. Similarly, the weighted
degree centrality for v′ ∈ V u is defined as

wdv′ = �u
v′ ·

⎛
⎜⎝

∑
u′∈Nu(v′)

wu
v′,u′

�u
v′

⎞
⎟⎠

α

. (6)

4.2.2. Closeness Centrality and Weighted Closeness Centrality. From the definition of de-
gree centrality, it indicates the local property of a node since only the adjacent links
are considered. To fully characterize a node’s topological importance, some centrality
measurements defined from a global view are also important and useful. One manner to
count a node’s global structural importance is by closeness centrality, which measures
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Fig. 3. Closeness centrality.

how close a node is to other nodes in a graph and is defined as the ratio between n − 1
and the sum of its distances to all other nodes [Freeeman 1978; Newman 2010; Simi-
larity 2015]. In the definition, n is the number of nodes and distance is the length in
terms of hops from a node to another node in a graph. Formally, for v ∈ V a, its closeness
centrality cv is defined as

cv = |V a| − 1∑
u∈V a,u�=v

|pa(v, u)| . (7)

Similarly, the closeness centrality cv′ of v′ ∈ V u is defined as

cv′ = |V u| − 1∑
u′∈V u,u′ �=v′

|pu(v′, u′)| . (8)

As an example, Figure 3 demonstrates the closeness centrality score of the nodes in St
Andrews, Infocom06, and Smallblue, as well as their counterparts in the corresponding
social graphs (Facebook, DBLP, and Facebook), respectively. From Figure 3, the close-
ness centrality distribution of nodes in the anonymized graph generally agrees with
that in the auxiliary graph, which suggests that closeness centrality can be a measure-
ment for de-anonymization. In the case that the data being considered is modeled by a
weighted graph, we define the weighted closeness centrality3 for v ∈ V a and v′ ∈ V u as

wcv = |V a| − 1∑
u∈V a,u�=v

|pa
w(v, u)| (9)

and

wcv′ = |V u| − 1∑
u′∈V u,u′ �=v′

|pu
w(v′, u′)| , (10)

respectively, where pa
w(·, ·)/pu

w(·, ·) is the shortest path between two nodes in a weighted
graph.

4.2.3. Betweenness Centrality and Weighted Betweenness Centrality. Besides closeness cen-
trality, betweenness centrality is another measure indicating a node’s global structural
importance within a graph, which quantifies the number of times a node acts as a bridge
(intermediate node) along the shortest path between two other nodes [Freeeman 1978;

3Note that weighted closeness centrality is a concept in network science and there are other definitions for
this term in Opsahl et al. [2010] and Newman [2010].
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Fig. 4. Betweenness centrality.

Newman 2010; Similarity 2015]. Formally, for v ∈ V a, its betweenness centrality bv in
Ga is defined as

bv =

∑
x �=v �=y

σ a
xy(v)
σ a

xy(|V a|−1
2

) = 2
(|V a| − 1)(|V a| − 2)

·
∑

x �=v �=y

σ a
xy(v)

σ a
xy

, (11)

where x′, y′ ∈ V a, σ a
xy = |Pa(x, y)| is the number of all the shortest paths between x and

y in Ga, and σ a
xy(v) = |{pa(x, y) ∈ P

a(x, y)|v is an intermediate node on path pa(x, y)}|
that is the number of shortest paths between x and y in Ga that v lies on. Similarly,
the betweenness centrality bv′ of v′ ∈ V u in Gu is defined as

bv′ =

∑
x′ �=v′ �=y′

σu
x′ y′ (v′)
σu

x′ y′(|V u|−1
2

) = 2
(|V u| − 1)(|V u| − 2)

·
∑

x′ �=v′ �=y′

σ u
x′ y′ (v′)

σ u
x′ y′

. (12)

According to the definition, we obtain the betweenness centrality of nodes in St
Andrews/Facebook, Infocom06/DBLP, and Smallblue/Facebook as shown in Figure 4.
From Figure 4, the nodes in Ga and their counterparts in Gu agree highly on be-
tweenness centrality. Consequently, betweenness centrality can also be employed in
our de-anonymization framework for distinguishing mappings. For the case that the
considering data is modeled as a weighted graph, we define the weighted betweenness
centrality4 for v ∈ V a and v′ ∈ V u as

wbv =

∑
x �=v �=y

σwa
xy (v)
σwa

xy(|V a|−1
2

) = 2
(|V a| − 1)(|V a| − 2)

·
∑

x �=v �=y

σwa
xy (v)

σwa
xy

(13)

and

wbv′ =

∑
x′ �=v′ �=y′

σwu
x′ y′ (v′)
σwu

x′ y′(|V u|−1
2

) = 2
(|V u| − 1)(|V u| − 2)

·
∑

x′ �=v′ �=y′

σwu
x′ y′ (v′)

σwu
x′ y′

, (14)

respectively, where σwa
xy and σwa(v)

xy (σwu
x′ y′ and σ

wa(v′)
x′ y′ , respectively) are the number of

shortest paths between x and y (x′ and y′, respectively) and the number of shortest paths
between x and y (x′ and y′, respectively) passing v (v′, respectively) in the weighted
graph Ga (Gu, respectively), respectively.

4Similar to the weighted closeness centrality, weighted betweenness centrality is also a concept in network
science and there are other definitions for this term in Opsahl et al. [2010] and Newman [2010].
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Fig. 5. Structural similarity.

4.2.4. Structural Similarity. From the analysis on real datasets, the local and global struc-
tural characteristics carried by degree, closeness, and betweenness centralities of nodes
can guide our de-anonymization framework design. Following this direction, to consider
and utilize nodes’ structural property integrally, we define a unified structural mea-
surement, namely, structural similarity,5 to jointly count two nodes’ both local and
global topological properties. First, for v ∈ V a and v′ ∈ V u, we define two structural
characteristic vectors Sa(v) and Su(v′), respectively, in terms of their (weighted) degree,
closeness, and betweenness centralities as follows:

Sa(v) = [dv, cv, bv, wdv, wcv, wbv] (15)

Su(v′) = [dv′ , cv′ , bv′ , wdv′ , wcv′ , wbv′ ]. (16)

In Sa(v), if Ga is unweighted, we set wdv = wcv = wbv = 0; otherwise, we first count
dv, cv, and bv by assuming Ga is unweighted, and then count wdv, wcv, and wbv in the
weighted Ga. We also apply the same method to obtain Su(v′) in Gu. Based on Sa(v)
and Su(v′), we define the structural similarity between v ∈ V a and v′ ∈ V u, denoted by
sS(v, v′), as the cosine similarity between Sa(v) and Su(v′)6, that is,

sS(v, v′) = Sa(v) · Su(v′)
‖Sa(v)‖‖Su(v′)‖ , (17)

where · is the dot product and ‖ · ‖ is the magnitude of a vector.
The structural similarity between the nodes in St Andrews, Infocom06, and Small-

blue and their corresponding auxiliary networks is shown in Figure 5, where Counter-
part represents sS(v, v′ = γ (v)) indicating the structural similarity between v ∈ V a and
its objective reality γ (v) in Gu, Min represents min{sS(v, x′)|x′ ∈ V u, x′ �= γ (v)}, Max rep-
resents max{sS(v, x′)|x′ ∈ V u, x′ �= γ (v)}, and Avg represents 1

|V u|−1

∑
x′∈V u,x′ �=γ (v) sS(v, x′).

From Figure 5, we have the following two basic observations:

—For some nodes with distinguished structural characteristics (e.g., nodes 2, 16, and
24 in St Andrews; nodes 10 and 40 in Infocom06; and nodes 19, 54, 64, 72, 111, and

5Depending on the specific applications, several other structural similarity measures were defined, for
example, chemicals’ structure comparison [Basak et al. 1988], role assignment/extraction [Brandes and
Lerner 2004], and graph clustering [Zhou et al. 2009]. In this article, we define the structural similarity
measure mainly for graph de-anonymization. All these measures can be considered as different relations of
structural equivalence, an approach of defining graph/network similarity in network science [Newman 2010;
Hanneman and Riddle 2005; Similarity 2015].
6Note that it is also possible to employ other metrics to measure the structural similarity between two nodes,
for example, the Euclidian distance. Nevertheless, when different levels of noise are added to the anonymized
graph (e.g., add/delete edges), the Euclidian distance between two vectors may vary significantly, while
their distribution similarity is more stable (during the graph anonymization process). Thus, to maximize
robustness, we employ cosine similarity.
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115 in Smallblue), they agree with their counterparts and disagree with other nodes
in the auxiliary graphs significantly (actually, they also show similar agreeableness
and disagreeableness with respect to degree, closeness, and betweenness centrali-
ties). Consequently, this suggests that these nodes can be de-anonymized even just
based on their structural characteristics. In addition, this confirms that structural
properties can be employed in de-anonymization attacks.

—For the nodes with indistinctive structural similarities (e.g., nodes 7, 10, 22, and 26
in St Andrews; nodes 16, 73, and 78 in Infocom06; and nodes 4, 40, 86, 102, and 124
in Smallblue), exact node mapping relying on structural property alone is difficult or
impossible to achieve from the view of graph theory. Fortunately, even if this is true,
structural characteristics can also help us to differentiate these indistinctive nodes
from most of the other nodes in the auxiliary graph. Hence, structural-similarity-
based coarse granularity de-anonymization is practical.

4.3. Relative Distance Similarity

In Section 4.1, we select an initial seed mapping M0 = Ms = {(s1, s′
1), (s2, s′

2), . . . ,
(sκ , s′

κ )}. This a priori knowledge can be used to conduct more confident ratiocination
in de-anonymization. Therefore, for v ∈ V a \ Ma

0 , we define its relative distance vector,7
denoted by Da(v) to the seeds in Ma

0 = {s1, s2, . . . , sκ}, as

Da(v) = [
Da

1(v), Da
2(v), . . . , Da

κ (v)
]
, (18)

where Da
i (v) = |pa(v,si )|

Da is the normalized relative distance between v and seed si. Simi-
larly, based on the initial seed set Mu

0 = {s′
1, s′

2, . . . , s′
κ} in Gu, we can define the relative

distance vector for v′ ∈ V u \ Mu
0 to the seeds in Mu

0 as

Du(v′) = [
Du

1(v′), Du
2(v′), · · · , Du

κ (v′)
]
, (19)

where Du
i (v′) = |pu(v′,s′

i )|
Du is the normalized relative distance between v′ and seed s′

i. Again,
we can define the relative distance similarity between v ∈ V a \ Ma

0 and v′ ∈ V u \ Mu
0 ,

denoted by sD(v, v′), as the cosine similarity between Da(v) and Du(v′), that is,

sD(v, v′) = Da(v) · Du(v′)
‖Da(v)‖‖Du(v′)‖ . (20)

For St Andrews/Facebook, Infocom06/DBLP, and Smallblue/Facebook, by assuming
Ms = {(i, i)|i = 1, 2, . . . , 6} (which implies Ma

0 = Mu
0 = {1, 2, 3, 4, 5, 6}), we can obtain

the relative distance similarity scores between the nodes in V a \ Ma
0 and the nodes in

V u \ Mu
0 as shown in Figure 6. From Figure 6, we can observe the following facts:

—Some anonymized nodes (which may be indistinctive with respect to structural simi-
larity) (e.g., nodes 14, 19, and 23 in St Andrews; nodes 28, 31, 37, and 54 in Infocom06;
and nodes 46, 63, 75, 98, and 105 in Smallblue) highly agree with their counterparts
and meanwhile disagree with other nodes in the auxiliary graph, which suggests
that they can be de-anonymized successfully with high probability by employing the
relative distance similarity based metric.

—For some nodes (e.g., nodes 11, 21, 26, and 27 in St Andrews; nodes 56 and 69 in
Infocom06; and nodes 12, 13, and 26 in Smallblue), they are indistinctive on the
relative distance similarity with respect to the initial seed selection {1, 2, 3, 4, 5, 6}.

7Note that the relative distance vector can also be defined using the Multidimensional Scaling (MDS) theory
[Kruskal and Wish 1978]. To be consistent with existing anonymization/de-anonymization literature [Hay
et al. 2008; Ji et al. 2014], we still use the “relative distance (similarity)” term. Mathematically, the used
relative distance similarity can be considered as a special case/application of MDS.
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Fig. 6. Relative distance similarity.

Fig. 7. Mapping inheritance.

To distinguish them, extra effort is expected, for example, by utilizing structural
similarity collaboratively, employing another seed selection.

—The nodes that are significantly distinguishable with respect to structural simi-
larity may be indistinctive with respect to relative distance similarity, and vice
versa. This inspires us to design a proper and effective multi-measurement-based
de-anonymization framework.

4.4. Inheritance Similarity

Besides the initial seed mapping, the de-anonymized nodes during each iteration, that
is, Mk, could provide further knowledge when de-anonymizing �δ(Ma

k ). As shown in
Figure 7, if the current de-anonymization result is Mk = {(a, a′), (b, b′), (c, c′)}, then
Mk can serve as a reference in the next iteration of de-anonymization; that is, Mk
can provide knowledge to de-anonymize �1(Ma

k ) = {v, x} (assume δ = 1). Therefore,
for v ∈ �δ(Ma

k ) and v′ ∈ �δ(Mu
k ), we define the knowledge provided by the current

mapping results as the inheritance similarity, denoted by sI(v, v′). Formally, sI(v, v′)
can be quantified as

sI(v, v′) =
⎧⎨
⎩

C
|Nk(v,v′)| ·

(
1 − |�a

v−�u
v′ |

max{�a
v ,�

u
v′ }

)
· ∑

(x,x′)∈Nk(v,v′)
s(x, x′), Nk(v, v′) �= ∅

0, otherwise
, (21)

where C ∈ (0, 1) is a constant value representing the similarity loss exponent,
Nk(v, v′) = (Na(v) × Nu(v′)) ∩ Mk = {(x, x′)|x ∈ Na(v), x′ ∈ Nu(v′), (x, x′) ∈ Mk} is the
set of mapped pairs between Na(v) and Nu(v′) till iteration k, and s(x, x′) ∈ [0, 1] is the
overall similarity score between x and x′, which is formally defined in the following
subsection.

From the definition of sI(v, v′), we can see the following: (1) If two nodes have more
common neighbors that have been mapped, then their inheritance similarity score is
high. For example, in Figure 7, v has more inheritance similarity with v′ than with x′. It
is reasonable since v and v′ are more likely to be the same user in this scenario. (2) We
also count the degree similarity in defining sI(v, v′). If the degree difference between v
and v′ is small, then a large weight is given to the inheritance similarity; otherwise,
a small weight is given. (3) We involve the similarity loss in counting sI(v, v′), which
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Fig. 8. Inheritance similarity.

implies the inheritance similarity is decreasing with the distance increasing (iteration
increasing) between (v, v′) and the original seed mappings.

Now, for St Andrews/Facebook, Infocom06/DBLP, and Smallblue/Facebook, if we as-
sume half of the nodes have been mapped (the first half according to the ID increasing
order),8 then the inheritance similarity between the rest of the nodes in the anonymized
graph and the auxiliary graph is shown in Figure 8. From the result, we can observe
that under the half number of nodes mapping assumption, some nodes (e.g., nodes 16,
19, and 24 in St Andrews; nodes 40, 56, 64, and 72 in Infocom06; and nodes 64, 65, 92,
96, 111, and 115 in Smallblue) agree with their counterparts and meanwhile disagree
with all the other nodes significantly in the auxiliary graph, which implies that they
are potentially easier to be de-anonymized when inheritance similarity is taken as a
metric. Note that, in Figure 8, we just randomly assume that the known mapping nodes
are the first half nodes in the anonymized and auxiliary graphs. Actually, the accuracy
performance of the inheritance similarity measurement could be improved. This is be-
cause there are no necessary correlations among the randomly chosen mapping nodes
in Figure 8. Nevertheless, in our de-anonymization framework, the obtained mappings
in one iteration depend on the mappings in the previous iteration. This strong correla-
tion among mapped nodes allows for the use of the inheritance similarity in practical
de-anonymizaiton.

4.5. De-Anonymization Algorithm

From the aforementioned discussion, we find that the differentiability of anonymized
nodes is different with respect to different similarity measurements. For instance,
some nodes have distinctive topological characteristics (e.g., node 16 in the St Andrew
dataset), which implies that they can be potentially de-anonymized solely based on the
structural similarity. On the other hand, for some nodes, due to the lack of distinct
topological characteristics, the structural-similarity-based method can only achieve
coarse granularity de-anonymization. Nevertheless and fortunately (from the view
of adversary), they may become significantly distinguishable with the knowledge of
a small amount of auxiliary information (e.g., nodes 14, 19, and 23 in St Andrews
are potentially easy to be de-anonymized based on relative distance similarity). In
summary, the analysis on real datasets suggests to us to define a unified measurement
to properly involve multiple similarity metrics for effective de-anonymization. To this
end, we define a US measurement by considering the structural similarity, relative

8Note that this assumption is used to illustrate an example. In a real attack, the inheritance similarity is cal-
culated based on the nodes that have been de-anonymized. It could be any subset of the anonymized/auxiliary
users.
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distance similarity, and inheritance similarity synthetically for v ∈ �δ(Ma
k ) and v′ ∈

�δ(Mu
k ) in the kth iteration of our de-anonymization framework as

s(v, v′) = cS · sS(v, v′) + cD · sD(v, v′) + cI · sI(v, v′), (22)

where cS, cD, cI ∈ [0, 1] are constant values indicating the weights of structural
similarity, relative distance similarity, and inheritance similarity, respectively, and
cS + cD + cI = 1. In addition, we define s(v, v′) = 1 if (v, v′) ∈ Ms. Now, we are ready to
present our US-based DA framework, which is shown in Algorithm 1.

ALGORITHM 1: US Based De-Anonymization (DA) Framework
input: Ga, Gu,Ms
output: de-anonymization of Ga

1 M0 = Ms, k = 0, flag = true;
2 while flag = true do
3 calculate �δ(Ma

k ) and �δ(Mu
k );

4 if �δ(Ma
k ) = ∅ or �δ(Mu

k ) = ∅ then
5 output Mk and break;

6 for every v ∈ �δ(Ma
k ) do

7 for every v′ ∈ �δ(Mu
k ) do

8 calculate s(v, v′);

9 construct a weighted bipartite graph Bk = (�δ(Ma
k ) ∪ �δ(Mu

k ), Eb
k, Wb

k ) between nodes
�δ(Ma

k ) and �δ(Mu
k ) based on s(v, v′);

10 use the Hungarian algorithm to obtain a maximum weighted bipartite matching of Bk,
denoted by M′ = {(v, v′)|v ∈ �δ(Ma

k ), v′ ∈ �δ(Mu
k )};

11 for every (x, x′) ∈ M′ do
12 if s(x, x′) < θ then
13 M′ = M′ \ {(x, x′)};
14 let K = max{1, �ε · |M′|�} and for ∀(x, x′) ∈ M′, if s(x, x′) is not the Top-K mapping score

in M′ then
15 M′ = M′ \ {(x, x′)}, i.e. onlykeep the Top-K mapping pairs in M′;

16 if M′ = ∅ then
17 output Mk and break;

18 Mk+1 = Mk ∪ M′;
19 k++;

In Algorithm 1, Bk = (�δ(Ma
k )∪�δ(Mu

k ), Eb
k, Wb

k ) is a weighted bipartite graph defined
on the intended de-anonymizing nodes during the kth iteration, where Eb

k = {lb
v,v′ |∀v ∈

�δ(Ma
k ),∀v′ ∈ �δ(Mu

k )}, and Wb
k = {wb

v,v′ } is the set of all the possible weights on the
links in Eb

k. Here, for ∀(v, v′) ∈ Eb
k, the weight on this link is defined as the US score

between the associated two nodes, that is, wb
v,v′ = s(v, v′). Parameter θ is a constant

value named de-anonymization threshold to decide whether a node mapping is accepted
or not. Parameter ε ∈ (0, 1] is the mapping control factor, which is used to limit the
maximum number of mappings generated during each iteration. By ε, even if there are
many mappings with similarity score greater than the de-anonymization threshold, we
only keep the K = max{1, �|ε · M′|�} more confident mappings.

We give further explanation on the idea of Algorithm DA as follows. The de-
anonymization is bootstrapped with an initial seed mapping (line 1) and starts the
iteration procedure (lines 2–19). During each iteration, the intended de-anonymizing
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nodes are calculated first based on the mappings obtained in the previous iteration
(lines 3–5) followed by calculating the US scores between nodes in �δ(Ma

k ) and nodes in
�δ(Mu

k ) (lines 6–8). Subsequently, based on the obtained US scores, a weighted bipar-
tite graph is constructed between nodes in �δ(Ma

k ) and nodes in �δ(Mu
k ) (line 9). Then,

we compute a maximum weighted bipartite matching M′ on the constructed bipartite
graph by the Hungarian algorithm (line 10). To improve the de-anonymization accu-
racy, we apply two important rules to refine M′: (1) By defining a de-anonymization
thresholdθ , we eliminate the mappings with low US scores in M′ (lines 11–13). This is
because we are not confident to take the mappings with low US scores (<θ ) as correct
de-anonymizaiton, and more importantly, they may be more accurately de-anonymized
in the following iterations by utilizing confident mapping information obtained in this
iteration (this can be achieved since we involve inheritance similarity in the US def-
inition). (2) We introduce a mapping control factor ε, or K equivalently, to limit the
maximum number of mappings that have been recognized as correct de-anonymization
(lines 14 and 15). During each iteration, only K mappings with the highest US scores
will be taken as correct de-anonymization with confidence even if more mappings have
US scores greater than the de-anonymizaiton threshold. This strategy has two benefits.
On one hand, only highly confident mappings are kept, which could improve the de-
anonymization accuracy. On the other hand, for the mappings that have been rejected,
again, they may be better re-de-anonymized in the following iterations by utilizing the
more confident knowledge of the Top-K mappings from this iteration (lines 18 and 19).

5. GENERALIZED SCALABLE DE-ANONYMIZATION

In this section, we extend DA to more general scenarios such as large-scale data de-
anonymization, including the situation in which the anonymized graph and the auxil-
iary graph are partially overlapped, and disconnected anonymized graphs or auxiliary
graphs.

5.1. De-Anonymization on Large-Scale Datasets

The proliferation of social applications and services has resulted in the produc-
tion of significant amounts of data. To de-anonymize large-scale data, besides the
de-anonymization accuracy, efficiency and scalability are also important concerns.
Another predicament in practical de-anonymization, which is omitted in existing
de-anonymization attacks, is that we do not actually know how large the overlap
between the anonymized data and the auxiliary data is even if we have a lot of
auxiliary information available. Therefore, it is unadvisable to do de-anonymization
based on the entire anonymized and auxiliary graphs directly, which might cause low
de-anonymization accuracy as well as high computational overhead.

To address the aforementioned predicament, guarantee the accuracy of DA, and si-
multaneously improve de-anonymization efficiency and scalability on large-scale data,
we extend DA to an ADA framework, denoted by ADA. ADA adaptively de-anonymizes
Ga starting from a CMS, which is formally defined as follows. Let Ms be the initial
seed mapping between the anonymized graph Ga and the auxiliary graph Gu. Further-
more, define V a

s = ⋃
x,y∈Ma

0
{v|v lies on pa(x, y) ∈ P

a(x, y)} (i.e., V a
s is the union of all the

nodes on the shortest paths among all the seeds in Ga) and V a
c = V a

s ∪ �δ(V a
s ) (i.e.,

V a
c is the union of V a

s and the δ-hop mapping spanning set of V a
s ). Then, we define the

initial CMS on Ga as the subgraph of Ga on V a
c , that is, Ga

c = Ga[V a
c ] (as shown in

Figure 9). Similarly, we can define V u
s = ⋃

x′,y′∈Mu
0
{v′|v′ lies on pu(x′, y′) ∈ P

u(x′, y′)} and
V u

c = V u
s ∪ �δ(V u

s ). Then, the initial CMS on Gu is Gu
c = Gu[V u

c ] (as shown in Figure 9).
The CMS is generally defined for two purposes. On one hand, we can employ a

CMS to adaptively and roughly estimate the overlap between Ga and Gu as shown in
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Fig. 9. Core matching subgraph (CMS). Initial seed mappings are denoted by red nodes.

Figure 9 in terms of the seed mapping information. On the other hand, we pro-
pose to start the de-anonymization from the CMSs in Ga and Gu, by which the de-
anonymization is smartly limited to start from two small subgraphs with more in-
formation confidence, and thus we could improve the de-anonymization accuracy and
reduce the computational overhead.

ALGORITHM 2: Adaptive De-Anonymization (ADA)
input: Ga, Gu,Ms
output: de-anonymization of Ga

1 generate Ga
c and Gu

c from Gu and Ga, respectively;
2 run DA for Ga

c and Gu
c ;

3 if Step 2 is ended on the condition that�δ(Ma
k ) = ∅ or �δ(Mu

k ) = ∅ then
4 if �μ(V a

c ) = ∅ or �μ(V u
c ) = ∅ then

5 return ;

6 V a
c = V a

c ∪ �μ(V a
c ),V a

c = V a
c ∪ �μ(V a

c );
7 Ga

c = Ga[V a
c ], Gu

c = Gu[V u
c ];

8 go to Step 2 to de-anonymize unmapped nodes in updated Ga
c and Gu

c ;

Now, based on CMS, we discuss ADA as shown in Algorithm 2. In Algorithm 2, μ is
the adaptive factor that controls the spanning size of the CMS during each adaptive
iteration. The basic idea of ADA is as follows. We start the de-anonymization from
CMSs Ga

c and Gu
c by running DA (lines 1 and 2). If DA is ended with �δ(Ma

k ) = ∅ or
�δ(Mu

k ) = ∅, then the actual overlap between Ga and Gu might be larger than Ga
c /Gu

c
since more nodes could be mapped. Therefore, we enlarge the previous considering
CMS Ga

c /Gu
c by involving more nodes �μ(V a

c )/�μ(V u
c ) and repeat the de-anonymization

for unmapped nodes in the updated Ga
c /Gu

c (lines 3–8).

5.2. Disconnected Datasets

In reality, when we employ a graph Ga/Gu to model the anonymized/auxiliary data,
Ga/Gu might be not connected. In this case, Ga and Gu can be represented by the union
of connected components as

⋃
i Ga

i and
⋃

j Gu
j , respectively, where Ga

i and Gu
j are some

connected components. Now, when defining the structural similarity, relative distance
similarity, or inheritance similarity, we change the context from Ga/Gu to components
Ga

i /Gu
j . Then, we can apply DA/ADA to conduct de-anonymization.

6. EXPERIMENTS

In this section, we examine the performance of the presented de-anonymization
attack on real datasets. Particularly, we will validate DA/ADA on mobility traces (St
Andrews/Facebook, Infocom06/DBLP, Smallblue/Facebook), weighted data (Arnet-
Miner), and social data (Google+, Facebook).
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Fig. 10. De-anonymization performance versus similarity measurements, seed selection, and noise. Default
parameter settings: C = 0.9, cS = 0.1, cD = 0.8, cI = 0.1, θ = 0.6, δ ∈ {1, 2}, ε = 0.5, and seed number is 5.

6.1. De-Anonymize Mobility Traces

By utilizing the corresponding social networks as auxiliary information, we employ
the presented de-anonymization algorithm DA to de-anonymize the three well-known
mobility traces St Andrews, Infocom06, and Smallblue. The results are shown in
Figures 10(a)–(c), where DA denotes the presented US-based de-anonymization frame-
work, and DA-SS, DA-RDS, and DA-IS represent the de-anonymization based on struc-
tural similarity solely (by setting cS = 1 and cD = cI = 0 in US), relative distance simi-
larity solely (by setting cD = 1 and cS = cI = 0 in US), and inheritance similarity solely
(by setting cI = 1 and cS = cD = 0 in US), respectively. From Figures 10(a)–(c), we
can see the following: (1) The presented de-aonymization framework is very effective
even with a small amount of auxiliary information. For instance, DA can successfully
de-anonymize 93.2% of the Infocom06 data just with the knowledge of one seed map-
ping. For St Andrews and Smallblue, DA can also achieve accuracy of 57.7% and 78.3%,
respectively, with one seed mapping. Furthermore, DA can successfully de-anonymize
all the data in St Andrews and Smallblue and 96% of the data of Smallblue with the
knowledge of seven seed mappings. (2) The US-based de-anonymization is much more
effective and stable than structural, relative distance, or inheritance similarity solely
based de-anonymization. The reason is that US tries to distinguish a node from mul-
tiple perspectives, which is more efficient and comprehensive. As the analysis shows
in Section 4, the nodes can be easily differentiated with respect to one measurement
but might be indistinguishable with respect to another measurement. Consequently,
synthetically characterizing a node as in US is more powerful and stable.

We also examine the robustness of the presented de-anonymization attack to noise,
and the result is shown in Figure 10(d) (on the knowledge of 5 seed mappings). In
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Fig. 11. De-anonymize ArnetMiner. Default parameter settings: α = 1.5, C = 0.9, cS = 0.2, cD = 0.6,
cI = 0.2, θ = 0.6, δ ∈ {1, 2}, μ ∈ {1, 2, 3}, and ε = 0.5.

the experiment, we only add noise to the anonymized data. According to the same
argument in Narayanan and Shmatikov [2009], the noise in the auxiliary data can be
counted as noise in the anonymized data. To add p percent of noise to the anonymized
data, we randomly add p

2 · |Ea| spurious connections to and meanwhile delete p
2 · |Ea|

existing connections from the anonymized graph (a node may become isolated after the
noise adding process). For instance, in Figure 10(d), 20% of noise implies we add 10%
spurious connections and delete 10% existing connections of |Ea| from the anonymized
data. From Figure 10(d), we can see that the presented de-anonymization framework
is robust to noise. Even if we change 20% of the connections in the anonymized data,
the achieved accuracies on St Andrews, Infocom06, and Smallblue are still 80.8%,
50.7%, and 60.8%, respectively. Note that, when 20% of the connections have been
changed, the structure of the anonymized data is significantly changed. In practice,
if the anonymized data release is initially for research purposes (e.g., data mining),
this structural change may make the data useless. However, by considering multiple
perspectives to distinguish a node, the anonymized data can still be de-anonymized
as shown in Figure 10(d), which confirms the assertion in Narayanan and Shmatikov
[2009] that structure change may not provide effective privacy protection.

6.2. De-Anonymize ArnetMiner

ArnetMiner is a coauthor dataset consisting of 1,127 authors and 6,690 coauthor rela-
tionships. Consequently, ArnetMiner can be modeled by a weighted graph where the
weight on each relationship indicates the number of coauthored papers by the two au-
thors. To examine the de-anonymization framework, we first anonymize ArnetMiner
by adding p percent noise as explained in the previous subsection. Furthermore, for
each added spurious coauthor relationship, we also randomly generate a weight in
[1, Amax], where Amax is the maximum weight in the original ArnetMiner graph. Then,
we de-anonymize the anonymized data using the original ArnetMiner data, and the
result is shown in Figure 11.

From Figure 11, we can observe that the presented de-anonymization framework
is very effective on weighted data. With only knowledge of one seed mapping, more
than one-half (53.9%) and one-third (34.1%) of the authors can be de-anonymized
even with noise levels of 4% and 20%, respectively. Furthermore, when adding 20%
of noise to the anonymized data, the presented de-anonymization framework achieves
71.5% accuracy if five seed mappings are available and 92.8% accuracy if 10 seed
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Fig. 12. De-anonymize Google+. Default parameter settings: C = 0.9, cS = 0.2, cD = 0.6, cI = 0.2, θ = 0.6,
δ ∈ {1, 2}, μ ∈ {1, 2, 3}, and ε = 0.5.

mappings are available. The presented de-anonymization framework is robust to noise
on weighted data. When we have 10 or more seed mappings, the accuracy degradation
of our de-anonymization algorithm is small even with more noise; for example, the
accuracy is degraded from 99.7% in the 4% noise case to 96% in the 20% noise case.
If the available number of seed mappings is 10, the knowledge brought by more seed
mappings cannot improve the de-anonymization accuracy significantly. This is because
the achieved accuracy on the knowledge of 10 seed mappings is already about 95%.
Therefore, to de-anonymize a dataset, it is not necessary to spend efforts to obtain a lot
of seed mappings. As in this case, to de-anonymize most of the authors, five to 10 seed
mappings are sufficient.

6.3. De-Anonymize Google+

Now, we validate the presented de-anonymization framework on the two Google+
datasets JUL (5,200 users and 7,062 connections) and AUG (5,200 users and 7,813
connections). We first utilize AUG as auxiliary data to de-anonymize JUL denoted by
De-JUL (i.e., use future data to de-anonymize historical data), and then utilize JUL
to de-anonymize AUG denoted by De-AUG (i.e., use historical data to de-anonymize
future data). The results are shown in Figure 12(a). Again, from Figure 12(a), we can
see that the presented de-anonymization framework is very effective. Just based on
the knowledge of five seed mappings, 57.9% of the users in JUL and 61.6% of the users
in AUG can be successfully de-anonymized. When 10 seed mappings are available,
the de-anonymization accuracy can be improved to 66.8% on JUL and 73.9% on AUG,
respectively.

However, we also have two other interesting observations from Figure 12(a): (1) when
the number of available seed mappings is above 10, the performance improvement is not
as significant as on previous datasets (e.g., mobility traces, ArnetMiner) even though
the de-anonymization accuracy is around 70% for JUL and 75% for AUG; and (2) De-
AUG has a better accuracy than De-JUL, which implies that the AUG dataset is easier
to de-anonymize than the JUL dataset. To explain the two observations, we assert that
this is because of the structural property of the two datasets. Follow this direction, we
investigate the degree distribution of JUL and AUG as shown in Figure 12(b). From
Figure 12(b), we can see that the degree of both JUL and AUG generally follows a
heavy-tailed distribution. In particular, 38.4% of the users in JUL and 34.3% of the
users in AUG have degree of 1, named leaf users. This is normal since Google+ was
launched in early July 2011, and JUL and AUG are datasets crawled in July and
August of 2011, respectively. That is also why JUL has more leaf users than AUG (a
user connects more people later). Now, we argue that the leaf users cause the difficulty
in improving the de-anonymization accuracy. From the perspective of graph theory,
the leaf users limit not only the performance of our de-anonymization framework but

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 12, Publication date: April 2016.



12:26 S. Ji et al.

Fig. 13. De-anonymize Facebook. Default parameter settings: C = 0.9, cS = 0.2, cD = 0.6, cI = 0.2, θ = 0.8,
δ ∈ {1, 2}, μ ∈ {1, 2, 3}, and ε = 0.5.

also the performance of any de-anonymization algorithm. An explanatory example is
as follows. Suppose v ∈ V a is successfully de-anonymized to v′ ∈ V u. In addition, the
two neighbors x and y of v and the two neighbors x′ and y′ of v′ are all leaf users. Then,
even if x′ = γ (x), y′ = γ (y), and v has been successfully de-anonymized to v′, it is still
difficult to make a decision to map x (or y) to x′ or y′ since s(x, x′) ≈ s(x, y′) from the
view of graph theory. Consequently, to accurately distinguish x, further knowledge is
required.

To support our argument, we take an insightful look at the experimental results.
For each successfully de-anonymized user in JUL and AUG, we classify the user in
terms of its degree into one of two sets: leaf user set if its degree is 1 or nonleaf user
set if its degree is greater than 1. Then, we recalculate the de-anonymization accuracy
for leaf users and nonleaf users, and the results are shown in Figure 12(c), where De-
JUL-Leaf/De-AUG-Leaf represents the ratio of leaf nodes that have been successfully
de-anonymized in JUL/AUG and De-JUL-NonLeaf/De-AUG-NonLeaf represents the
ratio of nonleaf users that have been successfully de-anonymized in JUL/AUG. From
Figure 12(c), we can see that (1) the successful de-anonymization ratio on nonleaf users
is higher than that on leaf users in JUL and AUG—this is because nonleaf users carry
more structural information; and (2) considering the results shown in Figure 12(a),
the de-anonymization accuracy on nonleaf users is higher than the overall accuracy
and the de-anonymization accuracy on leaf users is lower than the overall accuracy.
The two observations on Figure 12(c) confirm our argument that leaf users are more
difficult than nonleaf users to de-anonymize. Furthermore, this is also why De-AUG
has higher accuracy than De-JUL in Figure 12(a). AUG is easier to de-anonymize since
it has fewer leaf users than JUL.

6.4. De-Anonymize Facebook

Finally, we examine ADA on a Facebook dataset, which consists of 63,731 users and
1,269,502 “friendship” users. Based on the hand-labeled ground truth, we partition the
datasets into two about-equal parts utilizing the method employed in Narayanan and
Shmatikov [2009], and then we take one part as auxiliary data to de-anonymize the
other part. When the two parts only have 10% and 20% users in common (i.e., only
10% and 20% overlap between the anonymized graph and the auxiliary graph), the
achievable accuracy and the induced false-positive error of ADA are shown in Figure 13.
As a fact, most of the existing de-anonymization attacks are not very effective for the
scenario in which the overlap between the anonymized data and the auxiliary data is
small or even cannot work totally. Surprisingly, for ADA, we can observe from Figure 13
that (1) based on the proposed CMS, ADA can successfully de-anonymize 62.4% of the
common users with a false-positive error of 34.1% when the overlap is 10% and 71.8% of

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 12, Publication date: April 2016.



General Graph Data De-Anonymization: From Mobility Traces to Social Networks 12:27

the common users with a false-positive error of 25.6% when the overlap is 20% with the
knowledge of just five seed mappings; (2) the de-anonymization accuracy is improved
to 81.3% (85.6%, respectively) and the false-positive error is decreased to 16.8% (13%,
respectively) when the overlap is 10% and there are 10 (20, respectively) seed mappings
available, and the de-anonymization accuracy is improved to 87% (90.8%, respectively)
and the false-positive error is decreased to 11.6% (8.6%, respectively) when the overlap
is 20% and there 10 (20, respectively) seed mappings available, which demonstrate
that ADA is very effective in dealing with the partial data overlap situation; and (3)
ADA has a higher de-anonymization accuracy and lower false-positive error in the 20%
data overlap scenario than that in the 10% data overlap scenario. This is because a
larger overlap size implies a common node will carry much more similar structural
information in both graphs. From Figure 13, we can also see that 10 seed mappings
are sufficient to achieve high de-anonymization accuracy and low false-positive error.
Therefore, ADA is applicable with efficiency and performance guarantee in practice.

7. CONCLUSION

In this article, we present a novel, robust, and effective de-anonymization attack to both
mobility trace data and social network data. First, we design three de-anonymization
metrics that take into account both local and global structural characteristics of data,
the information obtained from auxiliary data, and the knowledge inherited from on-
going de-anonymization results. When analyzing the three metrics on real datasets,
we find that some data can potentially be de-anonymized accurately and the other
data can be de-anonymized with coarse granularity. Subsequently, we introduce a
Unified Similarity (US) measurement that synthetically incorporates the three de-
fined metrics. Based on US, we propose a De-Anonymization (DA) framework, which
iteratively de-anonymizes data with accuracy guarantee. Then, to de-anonymize large-
scale data without the knowledge on the overlap size between the anonymized data
and the auxiliary data, we generalize DA to an Adaptive De-Anonymization (ADA)
framework. ADA works on two Core Matching Subgraphs (CMSs) adaptively, by
which the de-anonymization is limited to the overlap area of the anonymized data
and the auxiliary data, followed by improving de-anonymization accuracy and re-
ducing computational overhead. Finally, we apply the presented de-anonymization
attack to three mobility trace datasets: St Andrews/Facebook, Infocom06/DBLP,
and Smallblue/Facebook, and three relatively large social network datasets: Arnet-
Miner (weighted data), Google+, and Facebook. The experimental results demon-
strate that the presented de-anonymization framework is very effective and robust
to noise.

REFERENCES

L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and A. Panconesi. 2013. SoK: The evolution of Sybil defense
via social networks. In S&P.

L. Backstrom, C. Dwork, and J. Kleinberg. 2007. Wherefore art thou R3579X? Anonymized social networks,
hidden patterns, and structural steganography. In WWW.

S. C. Basak, V. R. Magnuson, G. J. Niemi, and R. R. Regal. 1988. Determining structural similarity of
chemicals using graph-theoretic indices. Discrete Appl. Math. 19 (1988), 17–44.

A. Bavelas. 1950. Communication patterns in task-oriented groups. J. Acoust. Soc. Am 22 (1950), 725–730.
G. Bigwood, D. Rehunathan, M. Bateman, T. Henderson, and S. Bhatti. 2011. CRAWDAD dataset

st_andrews/sassy. Retrieved from http:/crawdad.cs.dartmouth.edu/st_andrews/sassy.
P. Boldi and S. Vigna. 2014. Axioms for centrality. Internet Math. 10, 3–4 (2014), 222–262.
U. Brandes and J. Lerner. 2004. Structural similarity in graphs: A relaxation approach for role assignment.

LNCS 3341 (2004), 184–195.
A. Campan and T. M. Truta. 2008. A clustering approach for data and structural anonymity in social

networks. In PinKDD.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 12, Publication date: April 2016.

http:/crawdad.cs.dartmouth.edu/st_andrews/sassy


12:28 S. Ji et al.

Centrality. 2015. Centrality - Wikipedia, the free encyclopedia. Retrieved from https://en.wikipedia.
org/wiki/Centrality.

CRAWDAD. 2014. Retrieved from http://crawdad.cs.dartmouth.edu/.
M. Egele, C. Kruegel, E. Kirda, and G. Vigna. 2011. PiOS: Detecting privacy leaks in iOS applications. NDSS

(2011).
L. C. Freeeman. 1978. Centrality in social networks: Conceptual clarification. Social Netw. 1 (1978),

215–239.
M. Garg. 2009. Axiomatic foundations of centrality in networks. Social Sci. Res. Netw. (2009), 1–37.
N. Z. Gong, A. Talwalkar, L. Mackey, L. Huang, E. C. R. Shin, E. Stefanov, E. Shi, and D. Song. 2012a. Jointly

predicting links and inferring attributes using a social-attribute network (SAN). In SNA-KDD.
N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar, and D. Song. 2012b. Evolution of social-attribute

networks: Measurements, modeling, and implications using Google+. In IMC.
R. Hanneman and M. Riddle. 2005. Introduction to Social Network Methods: Table of Contents. Retrieved

from http://faculty.ucr.edu/∼hanneman/nettext/.
M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. 2008. Resisting structural re-identification in

anonymized social networks. In VLDB.
P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. 2011. These aren’t the droids you’re looking

for: Retrofitting android to protect data from imperious applications. In CCS.
S. Ji, W. Li, P. Mittal, X. Hu, and R. Beyah. 2014. Structural data de-anonymization: Quantification, practice,

and implications. In CCS.
S. Ji, W. Li, P. Mittal, X. Hu, and R. Beyah. 2015a. On your social network de-anonymizablity: Quantification

and large scale evaluation with seed knowledge. In NDSS.
S. Ji, W. Li, P. Mittal, X. Hu, and R. Beyah. 2015b. SecGraph: A uniform and open-source evaluation system

for graph data anonymization and de-anonymization. In USENIX Security.
J. Kruskal and M. Wish. 1978. Multidimensional Scaling. Sage Publications.
K. Liu and E. Terzi. 2008. Towards identity anonymization on graphs. SIGMOD (2008).
J. McAuley and J. Leskovec. 2012. Learning to discover social circles in ego networks. In NIPS.
A. Narayanan and V. Shmatikov. 2008. Robust de-anonymization of large sparse datasets (de-anonymizing

the Netflix prize dataset). In S&P.
A. Narayanan and V. Shmatikov. 2009. De-anonymizing social networks. In S&P.
M. E. J. Newman. 2010. Networks: An Introduction. Oxford University Press.
S. Nilizadeh, A. Kapadia, and Y.-Y. Ahn. 2014. Community-enhanced de-anonymization of online social

networks. In CCS.
T. Opsahl. 2010. Closeness centrality in networks with disconnected components | Tore Opsahl.

Retrieved from http://toreopsahl.com/2010/03/20/closeness-centrality-in-networks-with-disconnected-
components/.

T. Opsahl, F. Agneessens, and J. Skvoretz. 2010. Node centrality in weighted networks: Generalizing degree
and shortest paths. Social Netw. 32 (2010), 245–251.

Y. Rochat. 2009. Closeness centrality extended to unconnected graphs: The harmonic centrality index. In
ASNA. 1–14.

J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau. 2009. CRAWDAD dataset cambridge/haggle.
Retrieved from http://crawdad.cs.dartmouth.edu/cambridge/haggle.

SecGraph. 2015. Retrieved from http://www.ece.gatech.edu/cap/secgraph/.
Similarity. 2015. Similarity (network science) - Wikipedia, the free encyclopedia. Retrieved from

https://en.wikipedia.org/wiki/Similarity\_(network_science).
K. Singh, S. Bhola, and W. Lee. 2009. xBook: Redesigning privacy control in social networking platforms. In

USENIX.
Smallblue. 2009. SmallBlue Research Projects. Retrieved from http://domino.research.ibm.com/comm/

research_projects.nsf/pages/smallblue.index.html.
SNAP. 2014. Stanford Large Network Dataset Collection. Retrieved from http://snap.stanford.edu/data/.
M. Srivatsa and M. Hicks. 2012. Deanonymizing mobility traces: Using social networks as a side-channel.

In CCS.
J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. 2008. ArnetMiner: Extraction and mining of academic

social networks. In KDD.
B. Viswanath, A. N. Mislove, M. Cha, and K. P. Gummadi. 2009. On the evolution of user interaction in

facebook. In WOSN.

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 12, Publication date: April 2016.

https://en.wikipedia.org/wiki/Centrality
https://en.wikipedia.org/wiki/Centrality
http://crawdad.cs.dartmouth.edu/
http://faculty.ucr.edu/sim;hanneman/nettext/
http://toreopsahl.com/2010/03/20/closeness-centrality-in-networks-with-disconnected-components/
http://toreopsahl.com/2010/03/20/closeness-centrality-in-networks-with-disconnected-components/
http://crawdad.cs.dartmouth.edu/cambridge/haggle
http://www.ece.gatech.edu/cap/secgraph/
https://en.wikipedia.org/wiki/Similarityprotect $elax delimiter "026E30F $_(network_science)
http://domino.research.ibm.com/comm/researchprojects.nsf/pages/smallblue.index.html
http://domino.research.ibm.com/comm/researchprojects.nsf/pages/smallblue.index.html
http://snap.stanford.edu/data/


General Graph Data De-Anonymization: From Mobility Traces to Social Networks 12:29

H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. 2008a. SybilLimit: A near-optimal social network defense
against Sybil attacks. In S&P.

H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman. 2008b. SybilGuard: Defending against Sybil attacks
via social networks. IEEE/ACM Trans. Netw. 16, 3 (2008), 576–589.

H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao. 2009. DSybil: Optimal Sybil-resistance for recom-
mendation systems. In S&P.

E. Zheleva and L. Getoor. 2007. Preserving the privacy of sensitive relationships in graph data. In PinKDD.
Y. Zhou, H. Cheng, and J. X. Yu. 2009. Graph clustering based on structural/attribute similarities. In VLDB.

Received January 2015; revised November 2015; accepted February 2016

ACM Transactions on Information and System Security, Vol. 18, No. 4, Article 12, Publication date: April 2016.


